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G R A V I T Y  WAVES G E N E R A T E D  BY A BODY 

F A L L I N G  O N T O  S H A L L O W  W A T E R  

V .  I. B u k r e e v  a n d  A .  V .  G u s e v  UDC 532.59 

Two aspects of the problem of a body falling onto water are of interest in applied problems: the forces 
affecting the body itself and the waves generated in the process. Many scientific papers devoted to the study 
of the forces have appeared in connection with the invention of the hydroplane [1, 2]. Theoretical analysis 
at that time was performed within the framework of an ideal fluid model ignoring the influence of air. More 
recently, the necessity for the study of impact loads from waves to a ship or to off-shore structures became 
another great stimulus. In any problem on impact, the rheological properties of water are of great importance. 
The properties of air also play a part in momentum and energy transfer. A great number of papers consider 
these factors. Theoretical analysis of forces is simplified by the fact that some practically valuable information 
can be derived from analysis of the initial stage of the processes. The contemporary status of this line of 
investigation is reflected in [3-7]. 

In the present paper we focus on gravity waves generated by a falling body. The progress in this line 
of research is stimulated by the necessity of evaluating the consequences produced by falls of meteorites into 
the ocean or by falls of rock fragments into a fjord, and also by landslides in lakes. Among the numerous 
publications, we mention [8-10]. An extensive literature is dedicated to tsunami waves. In this regard, paticular 
attention has been given to the development of effective methods of numerical calculations. 

There are difficults, however, in specifying initial conditions for such calculations in which experiment 
plays an important part. For waves generated by a falling body, the situation is complicated by phenomena 
such as rupture of the liquid continuity, liquid jet injection into the atmosphere, and wave breaking, which 
occurs with strong perturbations. Such processes present a serious problem for many theoretical methods of 
anMysis. In this connection, it is pertinent to mention the method in [11], which has been used to predict 
complicated processes in the neighborhood of the body, which are further illustrated by photographs. 

Plane gravity waves generated by a body falling onto water have been studied experimentally in 
[12, 13]. Similar waves result from displacement of a part of the reservoir bottom. They have been studied, 
for example, in [14]. Some experimental data on the waves generated by a falling axisymmetric body are 
contained in [15, 16]. 

The aim of the present paper is to supplement the available experimental information on plane waves. 
The experiments were performed in such a way that the effects due to finite liquid depth would be strongly 
displayed themselves. In this case there is a critical velocity in the system: c,  = (gh)  I/2 (where g is the 
acceleration of gravity, h is the liquid depth). Upon attaining the critical velocity, the wave of level elevation 
can break, and the question arises: what part of the perturbation energy (and in what form) is preserved 
after the breaking? Along with gravity waves, also the processes in the neighborhood of the body (which were 
studied earlier, for example, in [17-19]) were registered in the experiments. In particular, information on the 
relationship between these processes and the gravity waves was obtained. 

The formulation of the problem along with the main designations are explained in Fig. 1. A rectangular 
channel with a horizontal bottom of length L = 4.3 m and width B = 0.2 m was filled with water to depth h. 
Initially, the water was at rest. At moment t = 0, a solid body began to fall from height H from air onto 
water. Bodies of two shapes were used: a rectangular parallelepiped with dimensions l, b, and H1 and a wedge 
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Fig. 1 

with parameters a, b, and / /1  (see Fig. 1). The conditions/-/1 > h and b ..~ B were met. The first condition 
meant that the upper edge of the body was not submerged in the liquid (this simplified the wave pattern), 
while the second one meant that the waves were almost plane. 

Physical parameters such as gravity acceleration g, liquid density p, body density pl, liquid viscosity and 
compressibility, surface tension, and also the density, viscosity, and compressibility of air, play an important 
part in the problem discussed. For example, liquid compressibility and surface tension define not only the 
energy carried away by sonic and capillary waves. The relative portion of this energy was negligible in the 
experiments. Surface tension and compressibility affect the location of the point at which water separates from 
the body to carry away a significant part of the energy [20]. Because of liquid viscosity, the objects known 
as solitary waves in the ideal fluid model cannot be correctly reproduced in experiments. In the model, these 
waves are stationary. In experiments, they decay because of viscosity. 

When comparing theoretical and experimental solitary waves, one may only rely on the following 
principle of the quasistationary state: if the influence of viscosity is accounted in any parameter of a solitary 
wave, for example, in its amplitude, then its shape and velocity can be found using the algorithms developed 
in the ideal fluid model. The validity of this principle was confirmed by the experiments of [21]. The physical 
properties of air become important when a blunt body approaches a liquid surface at a high speed. 

Of all the physical parameters, only density pl was varied in the experiments and the condition pl > p 
was met. The other physical parameters can be found in reference books with allowance for the normal 
laboratory conditions of the experiments. Of the geometric parameters, the values of h, H, H1, l, and a were 
varied. Below they are given in dimensionless form: 

H ~ = H / h ,  g ~ = H 1 / h ,  l ~ = I /h ,  x ~ = x / h ,  pO = (pl  - p ) / p .  

The fixed coordinate system shown in Fig. 1 is used. 
The law of motion y . ( t )  was registered by a rheochord transducer (here y, is the vertical coordinate of 

the lower edge of the body). Deviations of the free surface from equilibrium r/were registered by wavemeters, 
whose principle of operation was based on the difference in electrical conductivity between water and air. 
Paper-tape recorders were used along with a HISTOMAT-S system of data acquisition and processing to record 
the transducer signal and preliminary processing. Qualitative information was obtained by a photocamera 
with an exposition time of 1/250 sec. The wave velocity was calculated from signals of two wavemeters spaced 
Ax < 8h apart. All the equipment was tested in processes with characteristics known a priori. For wavemeters, 
this process was their oscillations in relation to the quiescent liquid, while for a rheochord transducer this 
was the law of a freely falling body. Using the information thus obtained, along with the results of sample 
repeated tests under the same conditions, the following estimates for the mean square measurement error 
were determined: about 2% for the wave amplitude parameters and about 3% for the phase parameters. 

The results below were obtained in experiments with bodies falling along one of the side walls of the 
channel. In addition, proof experiments were carried out in which a parallelepiped of doubled length 21 and a 
wedge with doubled vertex angle 2c~ fall into the middle of the channel. The wave amplitude characterictics 
were found to differ most greatly. In these experiments, this difference did not exceed 7%. In experiments with 
a body falling into the middle of the channel, the wave amplitudes were larger. This is due to the influence of 
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the gap during the fall along the side wall. 
Gravity waves carry away only a portion of the energy that is introduced into the liquid by a body. 

The stronger the perturbation, the more energy dissipates via complicated processes near the body. These 
processes are described in detail in the above-mentioned literature. Additional information for the fall of 
a parallelepiped onto shallow water is given in Fig. 2. Similar photographs were published in [17, 22]. In 
comparison with them, the photographs in Fig. 2 refer to a longer t ime interval. Here 1 is the free surface, 2 is 
the channel bottom, 3 is the parallelepiped, 4 is the horizontal jet, and 5 is the parcel of air. The photographs 
illustrate the typical perturbation shapes; therefore, the time intervals between individual frames are not 
equal. 

The photographs shown in Fig. 2a-f were taken for h = 8 cm, H ~ = 3.75, H ~ = 2.26, l ~ = 1.15, and 
p0 = 0.215. The initial stage of development of a cavity and of a spray jet are shown in Fig. 2a. The spray 
jet is vertical (cf. with [17]). The boundaries of the cavity and of the perturbation's leading edge change 
monotonically with height. In Fig. 2b, the jet reaches a high altitude; the channel bottom are exposed and 
the boundaries of the cavity and of the wave leading edge are nonmonotonic. Attention is drawn to the fact 
that, in addition to the vertical jet, a horizontal jet 4 is ejected from the liquid bulk. The frame in Fig. 2c 
was taken about 0.1 sec after the frame in Fig. 2b. The velocities within the spray jet decreased. The final 
stage of cavity collapse and of spray-jet generation are shown in Fig. 2d. 

In the example under discussion, intense dissipation of mechanical energy occurs at a considerable 
distance from the body because of the breaking of the perturbation's leading edge. Three stages of the 
breaking process of the leading edge are illustrated by the photographs in Fig. 2d-f. The last photograph 
refers to distance from the body x = 30h. Due to lack of energy supply, the breaking process gradually ceases 
and the waves bedome smooth. In this example, the leading edge of smooth waves propagated at a velocity 
that  was appreciably higher than the critical velocity and two solitary waves formed at large distances from 
the body. 

The frames in Fig. 2g,h were taken under conditions that differ from the previous conditions only in 
value H ~ = 1.0. In this case, spray jets did not form and the leading edge did not break. The cavity rapidly 
collapsed and, as a result, a significant parcel of air 5 was captured in the liquid. The pertubation's leading 
edge in this case also propagated at a supercritical velocity, but only one solitary wave formed away from the 
body. Under less intense perturbations, a nonstationary dispersing wave train formed which propagates at a 
subcritical velocity. 

The effects illustrated by Fig. 2a-f can be explained qualitatively through an analysis of the 
nonstationary process of collision of counter jets in a transverse gravitational field [i1]. In such a sketchy 
description, the perturbation introduced by a wedge differs significantly from that introduced by a 
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parallelepiped. In the case of a wedge, the momentum of the moving mass of liquid is directed at an angle to 
the horizon. As a result, a significant part  of the perturbation energy transfers to the spray jets. This explaing 
why, when a wedge was used, all a t tempts  to obtain waves which would propagate at a supercritical velocity 
failed. 

Figure 3 shows the  typical  motion of the t rajectory y,(t) and velocity V(t) for a parallelepiped for the 
following initial parameters:  h = 8 cm, H ~ = 2.5, H ~ = 2.26, l ~ = 0.575, and p0 = 0.215. At t < t .  the body 
moved through air, in good agreement  with the law of a freely falling body ignoring friction. At the moment  
the  body touches the water  (t = t . ) ,  its velocity sharply falls and moderate  velocity oscillations are observed. 
At the instant the body  touches the bot tom,  the velocity decreases practically to zero. 

Examples of waves recorded by a fixed wavemeter are shown in Fig. 4. Wave 1 was obtained in 
experiments with a wedge for h = 4.5 cm, H ~ = 4.3, H ~ = 4.4, a = 26.5 ~ and p0 = 0.4 and at distance 
z ~ = 26. The propagation velocity c of the first crest is lower than  the critical velocity c = 0.864c,. Such 
waves are typical of relatively weak perturbations.  They are nonsta t ionary  and disperse with time. 

Wave 2 was observed in experiments with a parallelepiped for h = 8 cm, H ~ = 2.9, H ~ = 2.26, 
l ~ = 0.575, p0 = 0.215, and z ~ = 16. There was no breaking of the leading front in this example. The first 
crest propagated at  the supercrit ical velocity c = 1.06c.. The first crest was followed by a long trough, with an 
al ternat ing wave train propagat ing over it with a subcritical velocity. Subsequently, one solitary wave evolves 
from this perturbation.  

Plots 3-5 il lustrate the evolution of the same parallelepiped-introduced per turbat ion for h = 4 cm, 
H ~ = 4.75, H ~ = 4.5, l ~ = 1.15, and p0 = 0.215. The values of z ~ differ: z ~ = 31.5 for plot 3 and z ~ = 89 
for plot 4. Wave 5 was registered at distance z ~ = 89, but after its reflection from the vertical side wall, it 
was located at distance z ~ = 108. In this example the breaking of the per turbat ion 's  leading edge occurred at 
z ~ < 60. Nevertheless, some similari ty to wave 2 can be traced. A distinguishing feature is the fact tha t  two 
solitary waves formed in this example after a lapse of time. 
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Fig 7 

If the breaking of the first crest has terminated or did not occurr at all, further transformation of the 
crest proceeds rather slowly. This fact is illustrated by the experimental data shown in Figs. 5-7 and is of 
great importance for applications since plane waves that are caused by a falling body can have impressive 
amplitudes and high propagation velocities even at long distances. 

Figure 5 shows data on the propagation velocity of the first crest in a series of experiments with a 
parallelepiped with h = 8 cm, l ~ = 0.575, H ~ = 2.26, and p0 = 0.215. The parameter H ~ was varied. Curves 
1-5 correspond to H ~ = 3.75, 2.5, 1.25, 1.0, and 0.63, respectively. It is evident that in the range at hand and 
within the measurement error, the value c/(gh)  1/2 does not depend on x ~ for at least x ~ 8.5. 

Figure 6 gives the height of the first crest a and its characteristic width ~ as functions of x ~ in 
experiments with a parallelepiped with h = 8 cm, H ~ = 2.5, H ~ = 2.26, l ~ = 0.58, and p0 = 0.215. The 
quantity & is defined as the crest width at a level y = h-k a/2. Values of a and g change quickly in this example 
only at x ~ < 20. Their subsequent slower change is partially due to the formation of a solitary wave and also 
to the influence of viscosity. 

The transformation of the first crest under the conditions specified in Fig. 6 is shown in more detail in 
Fig. 7. Wave 1 was registered at x ~ = 16 and wave 2, at x ~ = 19.8. One can see that most significant changes 
take place at the trailing edge. One can also see the rapid lag of the alternating wave train from the leading 
crest, whose propagation velocity in this example was 1.06c.. 

A portion of the initial perturbation energy that is carried away by a wave for long distances can be 
estimated for wave 5 in Fig. 4 from the following considerations. The energy introduced by the body into the 
liquid is defined by the formula 

Eo = p l l bg l (gH  - V02/2), (1) 

where V0 is the velocity of the body at the moment it reaches the bottom. Using the data of Fig. 3, one can set 
1/0 ~ 0. In the case considered, two solitary waves form at distances well away from the body and contain the 
greatest portion of the energy that is carried away by waves. According to the theoretical analysis in [23, 24], 
the energy of one solitary wave can be written as 

Es = 8Bpg(ash/3)3/2[1 + 9a~ -4- 21(as~ -4- (a~ + O((a~ (2) 

o as/h. For a ~ Here as is the solitary wave amplitude; a s = KK 1, the Rayleigh formula is obtained [1]. In the 
literature the following formula is used as well: 

Es = 4Bpg~a2/3, (3) 
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where A is the characteristic length of the solitary wave, which can be found by comparing the right sides of 
(2) and (3). 

For the case discussed, calculations using (1) and (2) lead to [(Es)1 + (Es)2I/Eo = 0.024 (subscripts 1 
and 2 correspond to wave number). 

This estimation shows, in particular, how difficult it is to describe only theoretically gravity waves, 
using only information on the body energy if this energy is high enough. Fortunately, this problem has a 
feature that is important for applications: despite the complexity of the processes near the body, the variety 
of gravity waves at great distances is not so rich. In predicting catastrohpic consequences, one can hold that 
finite-amplitude solitary waves constitute the greatest hazard. The theory of finite-amplitude, plane, solitary 
waves is well developed. According to the Rayleigh theory [1], the ultimate amplitude of a plane solitary wave 
equals h. One of the latest papers on this problem is [25]. 

The question of how many solitary waves are formed upon a fall of a body is of importance. In the 
above-described experiments we could not obtain more than two solitary waves following one another. More 
solitary waves were observed in experiments with displacement of part of the reservoir bottom [14]. However, 
when one introduces perturbation in such a way, the energy losses near the body diminish, for example, for 
lack of spray jets. 
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